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Abstract
Fishery managers must often reconcile conflicting estimates of population status and 
trend. Superensemble models, commonly used in climate and weather forecasting, may 
provide an effective solution. This approach uses predictions from multiple models as 
covariates in an additional “superensemble” model fitted to known data. We evaluated 
the potential for ensemble averages and superensemble models (ensemble methods) to 
improve estimates of population status and trend for fisheries. We fit four widely 
applicable data-limited models that estimate stock biomass relative to equilibrium 
biomass at maximum sustainable yield (B/BMSY). We combined these estimates of 
recent fishery status and trends in B/BMSY with four ensemble methods: an ensemble 
average and three superensembles (a linear model, a random forest and a boosted 
regression tree). We trained our superensembles on 5,760 simulated stocks and tested 
them with cross-validation and against a global database of 249 stock assessments. 
Ensemble methods substantially improved estimates of population status and trend. 
Random forest and boosted regression trees performed the best at estimating 
population status: inaccuracy (median absolute proportional error) decreased from 0.42 
– 0.56 to 0.32 – 0.33, rank-order correlation between predicted and true status 
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1  | INTRODUCTION

Status and trend are two of the most fundamental values to quan-
tify in the management of ecological populations (e.g. Hutchings, 
Minto, Ricard, Baum, & Jensen, 2010; IUCN 2015). However, man-
agers are often faced with reconciling multiple uncertain and poten-
tially conflicting estimates of status and trend (e.g. Branch, Jensen, 
Ricard, Ye, & Hilborn, 2011; Brodziak & Piner, 2010; Deroba et al., 
2015). For example, one model may suggest a population is at risk 
and declining in abundance while others may suggest it is not at risk 
and stable.

One solution is to take the average or weighted average of several 
model predictions, that is, an ensemble. Such ensembles are typically 
more accurate and less biased than individual model estimates and 
can incorporate various types of uncertainty, such as uncertainty in 
model structure, initial conditions and parameter estimation (Araújo 
& New, 2007; Dietterich, 2000). Ensembles are superior to individual 
models in at least three ways: (i) statistically by averaging across mod-
els and therefore being less likely to pick the “wrong” model, (ii) com-
putationally by reducing the risk of getting stuck in local optima, and 
(iii) representationally by expanding the range of hypotheses explored 
(Dietterich, 2000). This approach forms the basis of many machine-
learning methods (e.g. Dietterich, 2000), has helped reconcile climate 

forecasts from dozens of models (e.g. IPCC 2013; Murphy et al., 2004; 
Tebaldi & Knutti, 2007) and even improved early warning signs of 
malaria outbreaks (Thomson et al., 2006). In ecology, ensemble meth-
ods are sometimes used to improve species distribution modelling (e.g. 
Araújo & New, 2007; Breiner, Guisan, Bergamini, & Nobis, 2015) and 
indeed have been used to combine estimates of population status and 
trend (e.g. Brodziak & Piner, 2010).

Whereas averages or weighted averages of model estimates may 
improve predictions compared to a single model, they may not opti-
mally leverage available data. The best prediction does not necessar-
ily lie in the middle of multiple model predictions, some models may 
perform better than others in certain conditions, and the covariance 
between models may contain information that can improve predictive 
accuracy. For example, one model might perform well at estimating 
high levels of abundance but be biased at low levels of abundance, 
while another model might have the opposite properties. An optimal 
combination of these models is not simply an average of the two.

We can exploit these characteristics by using the predictions from 
a group of models as inputs into a separate statistical model. This 
technique, sometimes called superensemble modelling (Krishnamurti 
et al., 1999), is common in climate and weather forecasting (e.g. Mote 
et al., 2015; Yun et al., 2005). The superensemble is fit to a training 
data set where outcomes are well known and then used to predict on 
a data set of interest. For example, Krishnamurti et al. (1999) com-
bined predictions of wind and precipitation in Asian monsoons via a 
superensemble regression fit to observed data. Their superensemble 
was considerably more accurate than any individual prediction or an 
average of the predictions.

In fisheries science, the commonly used operational models for 
determining status and trend of exploited fish populations are stock 
assessments; that is, population models coupled to an observation 
model that incorporate all appropriate data (e.g. catches, size and age 
distributions, surveys, and tagging information) to quantify values 
such as the biomass of a stock that can produce maximum sustainable 
yield (BMSY; Hilborn & Walters, 1992). However, the broad range of 
data required to conduct these stock assessments is not available for 
the majority of fish populations, including those of conservation con-
cern and of economic interest to fisheries (FAO 2014). Therefore, a 
number of models have been proposed to assess B/BMSY based on the 

improved from 0.02 – 0.32 to 0.44 – 0.48 and bias (median proportional error) declined 
from −0.22 – 0.31 to −0.12 – 0.03. We found similar improvements when predicting 
trend and when applying the simulation-trained superensembles to catch data for global 
fish stocks. Superensembles can optimally leverage multiple model predictions; 
however, they must be tested, formed from a diverse set of accurate models and built 
on a data set representative of the populations to which they are applied.
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limited data available for the majority of fish stocks: (i) a time series of 
the total weight of catch, and (ii) a basic understanding of population 
productivity (e.g. Martell & Froese, 2013; Vasconcellos & Cochrane, 
2005). Recently, Rosenberg et al. (2014) investigated the performance 
of four data-limited models through a large-scale simulation experi-
ment. Three of these models were based on Schaefer (logistic) biomass 
dynamics, and one was an empirical model fitted to more data-rich 
stock-assessment output. The four models frequently disagreed about 
population status (e.g. Figure 1), no one model had strong perfor-
mance across all fish stocks, and some models performed better than 
others depending on circumstances.

Here, we estimate population status and trend of exploited 
fish populations using ensembles and superensembles (collectively 
“ensemble methods”) of these four data-limited models. We apply four 
ensemble-method approaches of varying complexity to both simu-
lated and real-world fish stocks and compare their predictive perfor-
mance against each other and the individual models.

2  | METHODS

To test the ability of superensembles to improve estimates of status 
and trend in data-limited fish stocks, we first fit four individual assess-
ment models to a large simulated data set of fish stocks. We then built 
and tested the performance of superensembles using cross-validation 
of the simulated data set. Finally, we tested superensembles built with 
the entire simulated data set against a database of global fish stocks. 
We describe these steps in detail below and illustrate the general 
approach graphically and with pseudocode in Figure 2.

2.1 | Individual models of population status

We fit four individual data-limited models that use catch data and 
basic life-history parameters to estimate B/BMSY. We chose these 
models because they can be fit to the vast majority of fisheries around 

the world, are established in the literature and have been extensively 
simulation tested (Rosenberg et al., 2014).

Three of the models are mechanistic and based generally on 
Schaefer biomass dynamics (Schaefer, 1954) of the form 

where ̂Bt+1 represents predicted biomass at time t plus 1 year, Bt rep-
resents biomass at time t, r represents intrinsic population growth rate, 
B0 represents unfished biomass or carrying capacity K, and C represents 
catch. The fourth model is an empirically derived model based on the 
RAM Legacy Stock Assessment Database (Ricard, Minto, Jensen, & 
Baum, 2012). Rosenberg et al. (2014) provide a full background on these 
four methods (http://www.fao.org/docrep/019/i3491e/i3491e00.htm, 
last accessed 2016-11-08), and code to fit all the models is available 
in an accompanying package datalimited for the statistical software R 
(R Core Team 2015) https://github.com/datalimited/datalimited (last 
accessed 2016-11-08) or Anderson et al. (2016a). In summary:

•	 CMSY (catch-MSY) implements a stock-reduction analysis with 
Schaefer biomass dynamics (Martell & Froese, 2013). It requires a 
prior distribution on r and K as well as priors on the relative propor-
tion of biomass at the beginning and end of the time series com-
pared to unfished biomass (depletion). The version of the model 
used in Rosenberg et al. (2014) was modified from Martell and 
Froese (2013) to generate biomass trends from all viable r-K pairs 
and produce an estimate of B/BMSY from the median trend.

•	 COM-SIR (catch-only model with sampling-importance resampling) is 
a coupled harvest-dynamics model (Vasconcellos & Cochrane, 2005). 
Biomass is assumed to follow a Schaefer model and harvest dynamics 
are assumed to follow a logistic model. The model is fit with a sam-
pling-importance-resampling algorithm (Rosenberg et al., 2014).

•	 SSCOM (state-space catch-only model) is a hierarchical model that, 
similar to COM-SIR, is based on a coupled harvest-dynamics model 
(Thorson, Minto, Minte-Vera, Kleisner, & Longo, 2013). SSCOM es-
timates unobserved dynamics in both fishing effort and the fished 
population based on a catch time series and priors on r, the maximum 
rate of increase of fishing effort and the magnitude of various forms 
of stochasticity. The model is fit in a Bayesian state-space framework 
to integrate across three forms of stochasticity: variation in effort, 
population dynamics and fishing efficiency (Thorson et al., 2013).

•	 mPRM (modified panel-regression model) is a modified version of 
the panel-regression model from Costello et al. (2012). Unlike the 
other models, mPRM is empirical and not mechanistic—it uses the 
RAM Legacy Stock Assessment Database to fit a regression model 
to a series of characteristics of the catch time series and stock with 
stock-assessed B/BMSY as the response. The model used in this 
article is modified from the original—it condenses the life-history 
categories into three categories to match the simulated data set, 
removes the maximum catch predictor because the absolute catch 
in the simulated data set is arbitrary, and does not implement the 
bias correction needed in Costello et al. (2012) because we do not 
derive estimates of median status across multiple stocks.

̂Bt+1=Bt+ rBt(1−Bt∕B0)−Ct,

F IGURE  1 Different models can suggest conflicting population 
statuses and trends. Shown are trajectories of estimated B/BMSY from 
four data-limited assessment methods (colours) and a data-rich stock 
assessment (black) for Southern blue whiting (Micromesistius australis) 
on Campbell Island Rise, New Zealand. Lines indicate median fits, and 
shaded regions indicate interquartile ranges. Dashed horizontal line 
indicates B/BMSY = 1
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2.2 | Simulated data set to build the superensemble

We first developed and tested ensemble methods on a fully facto-
rial simulated data set of fisheries with known status (Rosenberg 
et al., 2014). Briefly, these simulations were implemented with the 
FLR packages (Kell et al., 2007) for the statistical software R, and, in 
particular, the FLBRP package. The framework takes a series of life-
history parameters and fishery characteristics to generate population 
projections and resulting catch time series. Life-history values (e.g. 
mean asymptotic length) for three fish life histories (small pelagic, 
demersal and large pelagic) were translated into a complete set of 
parameters for a von Bertalanffy growth model, a maturity ogive, 
natural mortality, a selectivity function and a Beverton–Holt stock-
recruitment function using the life-history relationships derived in 
Gislason, Pope, Rice, and Daan (2008).

Fishing scenarios included three levels of initial biomass depletion 
compared to carrying capacity: biomass at 100%, 70% and 40% of car-
rying capacity; and four exploitation patterns: (i) a constant exploita-
tion rate, (ii) an exploitation rate coupled with biomass to mimic an 
open-access single-species fishery, (iii) a scenario where exploitation 
rate increased continuously, and (iv) a “roller coaster” scenario where 
the exploitation rate increased and then decreased. Process noise 
(recruitment variability; that is, unexplained variability in population 
dynamics) was introduced to the models at two magnitudes in log 
space, N (0,0.22) and N (0,0.62), and was either uncorrelated through 

time or had a first-order autoregressive parameter of .6. The simulation 
also included a scenario with N (0,0.22) measurement error around log 
catch and one scenario without measurement error. Rosenberg et al. 
(2014) ran 10 iterations for each combination of factors adding sto-
chastic draws of recruitment and catch-recording variability each time 
to generate a total of 5,760 stocks. Code to generate the simulations 
is available at https://github.com/datalimited/stocksims (last accessed 
2016-11-08).

2.3 | Building the superensemble models

The individual models we seek to combine with superensembles 
provide time series of stock status (B/BMSY). Therefore, we can use 
superensembles to estimate any property of these time series. Here, 
we focus on two properties: the mean and slope of B/BMSY in the 
last 5 years. Together, these quantities address the recent state and 
trend of stock status, which are both of management and conserva-
tion interest (e.g. Hutchings et al., 2010; IUCN 2015). To avoid undue 
influence of the time series end points on the calculated slope, we 
measured the slope as the Theil–Sen estimator of median slope (Theil, 
1950).

We used the mean or slope of B/BMSY as the response variable 
and the predictions from the individual models as predictors in our 
superensemble models (Figure 2a). When modelling mean B/BMSY—a 
ratio bounded at zero—we fit the superensemble models in log space 

F IGURE  2 Using a superensemble model to predict population status from two individual models. The process is illustrated graphically on 
the left and with R pseudocode on the right. (a) Individual models (red and blue lines) are fit to training data (dots) from populations of known 
or assumed status (known status shown by black line). The shaded grey boxes indicate the recent time period that we are interested in for this 
article. Estimates of status from these individual models (b̂i,1 and b̂i,2), potentially combined with additional covariates, are then used as covariates 
in a statistical model fitted to the known or assumed population status as the response (here represented as a linear model). The symbols β and 
ε represent parameters and error in the linear model, respectively. The i subscripts represent individual fish stocks from 1 to n, and θ represents 
the known status. (b) The superensemble can then be used to make predictions for new stocks of interest. The same individual models are fit 
to populations of interest and then combined using the previously fitted superensemble model. Here, the j subscripts represent individual fish 
stocks from 1 to m, and θ̂ represents the predicted status. The β̂ represents the parameters estimated when the superensemble was fit in panel (a)

(a)

(b)

https://github.com/datalimited/stocksims
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and exponentiated the predictions. For the estimates of B/BMSY slope, 
which are not bounded at zero, we fit superensemble models on the 
natural untransformed scale.

We compared an ensemble average and three superensembles of 
varying complexity: a linear model with two-way interactions, a ran-
dom forest and a boosted regression tree. We describe these models 
as estimating θ̂, which represents either the ensemble estimated log 
B/BMSY or slope of B/BMSY. The individual model estimates of log B/
BMSY or slope of B/BMSY are represented as b̂ for models 1 through 4 
(CMSY, COM-SIR, SSCOM, mPRM). The ensemble average for each 
fishery i was calculated as: 

We fit the linear model superensemble with all second-order 
interactions: 

For this illustrative example, we chose this level of model complex-
ity a priori but a modeller could apply model selection via information–
theoretic or cross-validation approaches.

Our two machine-learning superensemble models, a random 
forest and a generalized boosted model (GBM), were based on 
regression trees. Regression trees sequentially determine what 
value of a predictor best splits the response data into two branches 
based on a loss function (Breiman, Friedman, Stone, & Olshen, 
1984). In random forests, a series of regression trees are built on 
a random subset of the data and random subset of the covariates 
of the model (Breiman, 2001). In GBMs, each subsequent model is 
fit to the residuals from the previous model; data points that are fit 
poorly in a given model are given more weight in the next model 
(Elith, Leathwick, & Hastie, 2008). Random forests and GBMs can 
provide strong predictive performance and fit highly nonlinear rela-
tionships (Elith et al., 2008; Hastie, Tibshirani, & Friedman, 2009). 
We fit random forest models with the randomForest package (Liaw 
& Wiener, 2002) for R with the default argument values. We fit 
boosted regression tree models with the gbm package (Ridgeway, 
2015) for R. We fit GBMs with 2,000 trees, an interaction depth of 
6, a learning rate (shrinkage parameter) of 0.01 and all other argu-
ments at their default values.

2.4 | Additional covariates

Superensemble models allow us to incorporate additional covari-
ates and potentially leverage interactions between these covariates 
and individual model predictions. Additional covariates could be, 
for example, life-history characteristics, information on exploitation 
patterns or statistical properties of the data. We tested the perfor-
mance benefits of including one set of additional covariates: spectral 
properties of the catch time series. Spectral analysis decomposes 
a time series into the frequency domain and provides a means of 
describing the cyclical shape of the catch series that is independent 
of time-series length (except in affecting precision) and independent 
of absolute magnitude of catch. We fit spectral models to the scaled 

catch time series (catch divided by maximum catch) with the spec.ar 
function in R and recorded representative short- and long-term spec-
tral densities at frequencies of 0.20 and 0.05, which correspond to 
5- and 20-year cycles. For the linear model superensemble, we incor-
porated the two spectral covariates (S1, S2) along with all second-
order interactions as: 

with ε ~ N (0,σ2) and for simulated fisheries i 1 through n. We include 
the results of adding these additional covariates in the supplementary 
materials.

2.5 | Applying the superensemble models and 
testing performance

Once the superensemble models are built and trained using the simu-
lated stocks (or any data set with “known” status), we can use the 
superensembles to estimate the status of new stocks (Figure 2b). To 
do this, we applied the individual models to our stocks of interest (i.e. 
CMSY, COM-SIR, SSCOM, mPRM) and then used these individual 
model estimates of status or trend as data in our already built super-
ensemble models. In this article, we applied the superensemble mod-
els to subsets of the simulated data as a cross-validation test to test 
predictive performance and to the RAM Legacy Stock Assessment 
Database to test predictive performance on real stocks.

We used repeated threefold cross-validation: we randomly divided 
the data set into three sets, built superensemble models on two-thirds 
of the data and evaluated predictive performance on the remain-
ing third. We repeated this across each of the three splits and then 
repeated the whole procedure 50 times to account for bias that may 
result from any one set of validation splits. In the simulated data set, 
there were 10 replicates of each unique combination of simulation 
parameters that differed only in stochastic variability. As the dynamics 
of these populations were often similar, we grouped these stocks in 
the cross-validation process into either the training or testing split.

We also tested our ensemble methods on the RAM Legacy Stock 
Assessment Database—a compilation of stock-assessment output 
from hundreds of exploited marine populations around the world. Our 
analysis of the stock-assessment database was based on version 2.5. 
After removing stocks for which at least one of the individual mod-
els did not converge (121), this database included 249 stocks. We 
removed these stocks for all methods—both for the individual and 
superensemble models. An alternative would be to fit separate supe-
rensemble models to subsets of the individual models that did con-
verge, but for simplicity, we only used superensemble models fitted to 
all four individual models.

In the case of the RAM Legacy Stock Assessment Database, 
we used superensembles trained on the entire simulation data set. 
However, because mPRM is built on the same stock-assessment 
database, we applied threefold cross-validation to the data under-
lying the mPRM model so that the data set with which mPRM was 

θ̂i= (b̂i,1+ b̂i,2+ b̂i,3+ b̂i,4)∕4, for i=1,… ,n.

θ̂i=β0+β1b̂i,1+…+β1,2b̂i,1b̂i,2+…+𝜖i, 𝜖i∼N (0,𝜎2), for i=1,… ,n.

θ̂i= β0+β1b̂i,1+…+β1,2b̂i,1b̂i,2+…+βS1S1i+βS2S2i

+βS1,S2S1iS2i+β1,S2b̂i,1S2i+…+𝜖i,
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trained (for the individual model and superensemble) was separate 
from the data set with which it was tested. This meant that, for each 
iteration of cross-validation, we split the RAM database into three, 
fit the mPRM model to two-thirds of the RAM database, fit a supe-
rensemble with this version of mPRM and then tested the perfor-
mance of the superensemble on the third of the RAM database we 
had withheld.

Predictive performance can be evaluated with metrics that repre-
sent a variety of modelling goals. For continuous response variables 
such as the mean and slope of population status, performance met-
rics often measure some form of bias, precision, accuracy (a combina-
tion of bias and precision) or the ability to correctly rank or correlate 
across populations (e.g. Walther & Moore, 2005). Here, we measure 
proportional error, defined as (θ̂−θ)∕|θ|, where θ̂ and θ represent esti-
mated and “true” (or stock-assessed) mean or slope of B/BMSY. We cal-
culated median proportional error to measure bias, median absolute 
proportional error to measure accuracy and Spearman’s rank-order 
correlation between predicted and “true” values to measure the abil-
ity to correctly rank populations. When testing with the RAM Legacy 
Stock Assessment Database, we treated the estimates from these 
data-rich stock assessments as known without error. Thus, any error 
in the stock-assessment estimates of the mean or slope of B/BMSY 

also contributes to our estimates of prediction error for each of the 
four data-limited models and the ensembles. Code to reproduce our 
analysis is available at https://github.com/datalimited/ensembles (last 
accessed 2016-11-08) or Anderson et al. (2016b).

3  | RESULTS

Applied to the simulated data set of known stock status, the individ-
ual models had variable success at estimating the mean (status) and 
slope (trend) of B/BMSY in the last 5 years. All models exhibited a high 
degree of scatter around the one-to-one line of perfect status pre-
diction (Figure 3). In contrast to the known unimodal distribution of 
status, CMSY exhibited bimodal predictions (Figure 3a), but had the 
best rank-order correlation and accuracy scores (Figure 4a). COM-SIR 
and SSCOM both correctly identified a number of stocks with low 
status, but frequently predicted a high status when status was in fact 
low (Figure 3b,c). mPRM had relatively poor ability to predict status 
for the simulated data set (Figure 3d). There was generally little cor-
relation between true and predicted recent trend in status for any 
of the individual models (rank-order correlation = .02–.25) with the 
exception of SSCOM (correlation = .54; Figure S1a–d).

F IGURE  3 True (or assessed) population status (x-axis) vs predicted population status from individual models and ensemble methods with 
cross-validation (y-axis). These scatterplots represent the aggregate results of repeated threefold cross-validation tests where the ensemble 
models are built on two-thirds of the data and tested on the remaining third. (a–d) Individual data-limited model estimates of mean B/BMSY 
(biomass divided by biomass at maximum sustainable yield) in the last 5 years for a simulated data set of known population status. (e–h) 
Ensemble estimates for the same populations. Shown are a mean ensemble, a linear superensemble model with two-way interactions (LM), a 
random forest superensemble (RF) and a generalized boosted regression model superensemble (GBM). (i–l) The same ensemble models, which 
were trained on the simulated data set, applied to the RAM Legacy Stock Assessment Database and compared to data-rich stock-assessed 
status. In the case of the RAM Legacy Stock Assessment data, we refit the modified panel-regression model (mPRM) on each cross-validation 
split. We binned the data into hexagons for visual presentation. Darker areas indicate areas with greater density of data. Yellow–red shading and 
yellow–blue shading distinguishes individual models from ensemble methods
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Ensemble methods, and in particular the machine-learning supe-
rensemble models (random forest and GBM), generally improved 
estimates of status and trend over any individual model (Figure 3e–h, 
Figure S1e–h). Compared to the individual models, machine-learning 
superensembles decreased inaccuracy (median absolute proportional 
error) from 0.42 – 0.56 to 0.32 – 0.33, increased rank-order correla-
tion from 0.02 – 0.32 to 0.44 – 0.48 and reduced bias (median pro-
portional error) from −0.22 – 0.31 to −0.12 – 0.03 (Figure 4a). These 
superensembles also generally had better ability to distinguish if sim-
ulated stocks were above or below B/BMSY = 0.5 (Figure S2). Results 
were similar when predicting trend: compared to individual models, 
machine-learning superensembles decreased inaccuracy from 0.04 
– 0.06 to 0.03 – 0.03, increased rank-order correlation from 0.02 – 
0.54 to 0.61 – 0.65 and reduced bias from −0.009 – 0.014 to −0.002 
– 0.002 (Figure S3). The ensemble models that simply took a mean of 
the individual models ranked slightly behind the best individual model 
for estimating fish stock status (CMSY; Figure 4a) and had slightly 
lower correlation but higher accuracy than the best individual model 
at predicting the trends of status (SSCOM; Figure S3).

The superensemble models were able to improve the predictive 
performance by harnessing the best properties of individual models, 
the covariance between individual models, and interactions with 
other covariates. For example, SSCOM had strong predictive ability 
when it predicted low B/BMSY (Figure 3c, Figure S4c) and CMSY pre-
dictions were approximately linearly related to B/BMSY within the low 
and high clusters of predictions (Figure S4). SSCOM contributed most 
strongly on its own to determining trend (Figure S5). Superensembles 
also exploited the covariance between individual model predictions. 
For instance, both the linear model and GBM ensemble suggest that 
if mPRM and SSCOM predict high status, the true status also tends 
to be high (Figures S6 and S7f). The addition of spectral density 
covariates helped the superensemble models correctly predict higher 
status values (Figure S8g,h). The performance of the ensembles was 
only marginally improved by including these covariates (Figure S9 vs 
Figure 4).

When applied to the stock-assessment database, the superensem-
ble models—trained exclusively on the simulated data set—generally 
performed as well or better than the best individual models. The mean, 
random forest and GBM ensembles outperformed the mPRM method 
which is trained directly on the RAM Legacy Stock Assessment 
Database itself (Figure 4b, Figure S10). Compared to the individual 
models, the machine-learning superensembles increased accuracy by 
0%–30%, improved correlation from 0.19 – 0.36 to 0.35 – 0.38 and 
reduced bias from −0.25 – 0.45 to −0.05 – 0.02.

4  | DISCUSSION

Ensemble methods provide a useful approach to situations where envi-
ronmental resource management decisions must be made on the basis 
of multiple, potentially contrasting estimates of status. Compared to 
individual models of fish population status, ensemble methods were 
consistently the best or among the best across three performance 
dimensions (accuracy, bias and rank-order correlation), two response 
variables (status and trend), two data sets (simulated and global fish-
eries) and multiple ensemble methods (from a simple average to 
machine-learning superensembles). Our results suggest choosing a 
superensemble model that allows for nonlinear relationships, such as 
machine-learning methods; these models provided added insight into 
individual model behaviour and generally performed the best.

Certain conditions will make some ensemble models more effec-
tive than others. First, ensembles will be most effective when they 
are comprised of diverse individual models that choose different 
structural model forms, explore contrasting but plausible ranges of 
parameter values and make uncorrelated errors (Ali & Pazzani, 1996; 
Dietterich, 2000; Tebaldi & Knutti, 2007). We would expect such mod-
els to perform well in different conditions and an ensemble model can 
exploit the best predictive performance of each. Second, ensemble 
models will be most effective when they are not overfit to the training 
data set. Cross-validation testing (Caruana, Niculescu-Mizil, Crew, & 

F IGURE  4 Performance metrics of individual and ensemble models predicting mean B/BMSY (biomass divided by biomass at maximum 
sustainable yield) in the last 5 years fitted to a data set with (a) known population status and (b) the RAM Legacy Stock Assessment Database. 
The x-axis represents within-population inaccuracy: median absolute proportional error (MAPE). The y-axis represents across-population 
Spearman rank-order correlation. The top-left corner contains methods with the best performance across the two metrics. The colour shading 
represents bias (median proportional error; MPE): white points are unbiased, blue points represent methods that predict B/BMSY values that are 
too high, red points represent methods that predict B/BMSY values that are too low. These performance metrics are derived from the data in 
Figure 3 and based on repeated threefold cross-validation testing
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Ksikes, 2004; Hastie et al., 2009) and methods that are robust to over-
fitting such as random forests (Breiman, 2001) may help avoid overfit-
ting ensemble models. We note that our simplest ensemble model, an 
average of individual model predictions, performed approximately as 
well as complex machine-learning models when we trained our supe-
rensembles on the simulation data set and tested them on a sepa-
rate “real” data set (i.e. the RAM Legacy Stock Assessment Database, 
Figure 4b). Third, ensemble models will be most effective when they 
are trained on data that are representative of the data set of inter-
est (Knutti, Furrer, Tebaldi, Cermak, & Meehl, 2009; Weigel, Knutti, 
Liniger, & Appenzeller, 2010). Cross-validation within a training data 
set will provide an optimistically biased impression of predictive per-
formance if the training data set fundamentally differs from the data 
set of interest (Hastie et al., 2009).

We illustrated that superensembles can improve point estimates 
of population status and trends in status; however, there is no rea-
son why superensembles cannot also be used to provide measures 
of uncertainty around those point estimates. The same approaches 
to deriving measures of uncertainty from any regression model are 
available to a superensemble. For example, likelihood profile con-
fidence intervals or Bayesian credible intervals are available for 
superensembles fit via maximum likelihood or Bayesian procedures, 
respectively. Measures of predictive uncertainty can be generated 
for machine-learning methods such as random forests or GBMs using 
bootstrap procedures (e.g. Finnegan et al., 2015; Hastie et al., 2009). 
Furthermore, uncertainty from the component models could be 
included in superensembles. These superensembles could be fit using 
any errors-in-variables or measurement-error modelling approach (e.g. 
Carroll, Ruppert, Stefanski, & Crainiceanu, 2006).

Multimodel inference in the form of coefficient averaging 
weighted by information theoretics such as the Akaike information 
criterion (AIC) is a common analytical approach in fisheries and ecol-
ogy (e.g. Burnham & Anderson, 2002; Grueber, Nakagawa, Laws, & 
Jamieson, 2011; Johnson & Omland, 2004). The ensemble methods 
described in this article share similarities with coefficient averaging 
but differ in other important ways. Ensemble methods and coefficient 
averaging share the long-held notion that multiple working hypoth-
eses can contribute useful information for inference (Chamberlin, 
1890). A fundamental difference is that coefficient averaging focuses 
on averaging coefficients whereas ensembles instead average predic-
tions. Thus, ensembles provide a general purpose tool: they do not 
require information theoretics, and they can combine different types 
of models (e.g. parametric and nonparametric models or frequentist 
and Bayesian predictions). Furthermore, superensembles extend these 
benefits by allowing model predictions to be combined via nonlinear 
functions that are tuned to known data.

A strength of superensembles is that they can be tailored to pre-
dict specific response variables. For example, we built separate super-
ensemble models of mean B/BMSY and the slope of B/BMSY. The same 
set of model weights or nonlinear relationships need not hold across 
different response variables. For instance, SSCOM contributed little 
to the GBM superensemble estimate of status at higher levels of 
predicted B/BMSY (Figure S4), but contributed strongly to estimates 

of trend (Figure S5). Formally, fitting superensemble models to spe-
cific quantities of interest (such as the slope of B/BMSY) provides an 
additional calibration step to a quantity of interest (Rykiel, 1996). 
This ensemble calibration could include a loss function tailored to the 
goals of the model, say placing greater weight on accuracy at lower 
rather than higher status levels. Conversely, because superensembles 
are tailored to a specific response and loss function, superensembles 
force a modeller to choose an operational purpose for their model 
upfront (sensu Dickey-Collas, Payne, Trenkel, & Nash, 2014). For 
instance, one could have an ensemble estimate of B and an ensemble 
estimate of B0, but their ratio may not be the same as an ensemble 
estimate of B/B0. A modeller might therefore choose to focus on B/B0, 
which provides a unitless ratio, is easier to compare across stocks, 
and the ratio is often a more stable estimate across models (Deroba 
et al., 2015).

As Box and Draper (1987) noted, all models are wrong, but some 
may still be useful. The ensemble methods we investigated attempt to 
piece together the useful parts of candidate models to build a model 
with improved performance. Instead of viewing the superensemble as 
a black box, we think considerable mechanistic understanding can be 
gained by studying its structure. For example, when SSCOM estimates 
low status this is likely the case, conversely when COMSIR estimates 
low status, the true status is more likely to be high (Figure S4). These 
models have two main differences: (i) the form of effort dynamics, and 
(ii) the allowance for both measurement and process error in SSCOM, 
whereas the implemented COMSIR admits measurement error only. 
Were the methods to differ only in effort dynamics, the results point 
towards a more suitable representation of effort dynamics at low bio-
masses in SSCOM. We think that such investigation of the structure 
of a superensemble may lead to improvement in the mechanisms 
assumed in individual models.

Combining predictions from multiple models via superensemble 
methods is broadly useful in other subfields of fisheries science and 
ecology in general. In fisheries science, superensembles provide an 
additional tool to assist with some longstanding issues. For example, 
superensembles are helpful because modellers need not decide on one 
model—instead of deciding on dome versus asymptotic fisheries selec-
tivity (e.g. Sampson & Scott, 2012), or on whether to fix or estimate nat-
ural mortality (e.g. Johnson et al., 2015), superensembles can use multi-
ple models to draw inference. Furthermore, the relative contributions of 
individual models can help tease apart the conditions under which var-
ious model assumptions result in the most accurate predictions. Finally, 
superensembles can be used to directly estimate other quantities of 
interest in fisheries science. For instance, superensembles could help 
assess overfishing by estimating fishing mortality compared to fishing 
mortality at MSY (F/FMSY) or be trained to estimate natural mortality.

More broadly, in ecology, predictions about extinction risk are 
widely used at national (e.g. the US Endangered Species Act and the 
Canadian Species at Risk Act) and international (e.g. the IUCN Red 
List, IUCN 2015) levels. These risk assessments generally involve fit-
ting regression models to outcomes for individual species along with 
predictors of extinction risk (e.g. Anderson, Farmer, Ferretti, Houde, & 
Hutchings, 2011; Pinsky, Jensen, Ricard, & Palumbi, 2011), or fitting 
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population-dynamic models to data for individual species (e.g. DFO 
2010). Both types of models are prone to error caused by model mis-
specification and therefore results are sensitive to decisions about 
model structure (Brooks & Deroba, 2015). Although there are options 
to account for potential model misspecification in determination of 
species risk (e.g. coefficient averaging, Burnham & Anderson, 2002; 
generalized modelling, Yeakel, Stiefs, Novak, & Gross, 2011; or semi-
parametric methods, Thorson, Ono, & Munch, 2014), ensemble meth-
ods are a relatively simple way to combine predictions in a transparent 
manner. Beyond estimates of status and trend, ensemble methods 
could be used, for example, to increase the robustness of spatial pre-
dictions when designing networks of protected areas (Rassweiler, 
Costello, Hilborn, & Siegel, 2014) or to forecast potential spatial 
shifts in species distribution given climate impacts (Harsch, Zhou, 
HilleRisLambers, & Kot, 2014). In any case, superensembles are not a 
panacea and are ultimately limited by the quality, breadth and repre-
sentativeness of simulated or trusted data to which they are calibrated.
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